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Abstract

In this paper we report transition frequencies and line strengths computed for bright states of the

NNO dimer. We use a previously reported potential obtained from explicitly correlated coupled-

cluster calculations and fit using an interpolating moving least squares method. The rovibrational

Schroedinger equation is solved with a symmetry adapted Lanczos algorithm and an uncoupled

product basis set. All four intermolecular coordinates are included in the calculation. We propose

two tools for associating rovibrational wavefunctions with vibrational states and use them to find

polar-like and T-shaped-N-in-like rovibrational states. The first tool uses a re-expansion of the rovi-

brational wavefunction in terms of J = 0 eigenfunctions. The second uses intensities. Calculated

rotational transition frequencies are in very close agreement with experiment.
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I. INTRODUCTION

The spectroscopy of (NNO)2 has interested experimentalists and theorists for many years.

[1–14] (NNO)2 is a loosely bound Van der Waals complex of the type that has interested

McKellar and his co-workers. [1–3, 15–18] It has important large amplitude motions of the

type that have interested Bunker and his co-workers. [19–27] The deepest minimum on

the (NNO)2 potential energy surface (PES) corresponds to a non-polar slipped-antiparallel

structure with C2h symmetry. Spectra attributed to the ν2 and ν3 fundamentals and to

the ν2 + ν3 combination band (intra-molecular modes) were observed. [6, 7] Also observed

were combination bands involving the (inter-molecular) torsion and disrotatory coordinates.

[2, 5, 9] Transitions among states associated with a polar isomer (or isomers) of (NNO)2

have also recently been observed. [1, 3] As discussed in Ref. 13 (hereafter denoted paper

I) and Ref. 14 there are two polar isomers and both have a slipped-parallel structure with

Cs symmetry. A microwave spectrum of the polar isomer was also recorded. [4] In this

paper we use an accurate PES and compute rovibrational spectra considering the four inter-

molecular coordinates. In paper I we presented the PES and energy levels associated with the

global non-polar minimum. In this paper we present intensities and focus on understanding

the microwave spectrum of the polar isomer. There have been several theoretical studies

of (NNO)2 using various levels of ab initio theory to determine structures and harmonic

frequencies of the possible isomers. In particular, Berner et al. used the (CCSD/aug-cc-

pVDZ) method. [9] They stress the importance of the disrotatory cycle.

The potential surface has local wells for both the polar and the T-shaped N-in (TN)

shapes. There are two equivalent wells for both the polar and the TN shapes. The questions

that are the focus of this paper are: (1) Are there vibrational states that are localized in the

local minima (polar and TN) ? How does one identify polar-like and TN-like rovibrational

states if they exist? (2) To what extent are the intensities of transitions between polar-like

rovibrational states determined by the selection rules one would expect if the complex were

rigid and had the shape corresponding to the bottom of a polar well? (3) Does tunnelling

between equivalent wells give rise to splittings that might be observable? Some of these

questions were addressed in a recent paper. [14] The potential used in Ref. 14 has no or

perhaps very shallow TN minima and no TN states were reported, but some of polar-like
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states of Ref. 14 are close to those we obtain. Ref. 14 does not present intensities or discuss

how to identify J > 0 polar-like states.

We find polar-like states and propose two tools for identifying their associated vibrational

states. Polar-like states are expected owing to the fact that microwave transitions were

observed[4] and assigned to the polar isomer. The first tool uses intensities. Transitions

between polar-like and TN-like rovibrational states are bright, but transitions between other

rovibrational states are not. States linked by weak transitions, i.e. dark states, all have have

significant amplitude in the global minimum well. The second tool uses a re-expansion of

the J > 0 wavefunctions in the basis of J = 0 eigenfunctions.

II. POTENTIAL ENERGY SURFACE

A four-dimensional (rigid monomer) potential energy surface was made using an interpo-

lating moving least-squares fitting method. 1757 ab initio points computed at the CCSD(T)-

F12b/VTZ-F12 level [28] were used to produced a surface with an estimated fitting error

of less than 1.5 cm−1. Details were discussed in paper I. In this section, we summarize the

features related to the tunnelling dynamics between the two equivalent polar wells.

The coordinates used to compute the rovibrational levels and wavefunctions were de-

scribed in paper I. They are r0, the distance between the two monomers, the standard

polyspherical angles (θ1, θ2, φ2), and the Euler angles (α, β, γ). [29–32] The nature of the

large-amplitude motion is more easily understand using the extended angles (θ̃1, θ̃2) defined

by extending the range of (θ1, θ2) from [0, π] to [0, 2π]. They were used by Hougen and

Ohashi for HF dimer[33]. The disrotatory (X) and conrotatory (Y ) coordinates are easily

defined in terms of the extended angles: X = (θ̃1 + θ̃2)/2 and Y = (θ̃1 − θ̃2)/2. Fig. 1 is a

contour diagram of the potential. For each pair of values (θ1, θ2) the potential is minimized

with respect to r0 for both φ2 = 180◦ and φ2 = 0◦. The two polar wells are in the lower

panel of Fig. 1. Starting from the polar well at (θ1 ≈ 120◦, θ2 ≈ 120◦) one moves counter-

clockwise around the disrotatory cycle, from one polar structure to the other, by following

the potential valley to the T shaped structure at (θ1 ≈ 180◦, θ2 ≈ 90◦) and then moving to

the upper panel, proceeding to the N-in non-polar structure, denoted NN on the plot, and

moving back to the lower panel and along to the polar minimum at (θ1 ≈ 60◦, θ2 ≈ 60◦). The
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same path is shown in the extended coordinates in Fig. 2. In this case it is only necessary

to exit and enter once to follow the path between the two polar minima P1 and P2 (P3 and

P4 are copies). The full disrotatory cycle (Fig. 3), as first shown by Berner et al.[9], goes

from the global minimum (non-polar O-in) (G1), to a T-shaped O-in (TO1) transition state,

to a polar well (P1), to a T-shaped N-in (TN1) well, to the non-polar N-in transition state

(NN1), to a TN2 well, to the P2 well, through a TO2 transition state, and finally back to

G1.

Three tunnelling paths connect the two polar wells. Two of them follow the disrotatory

cycle, one in a clockwise sense and one in an anticlockwise sense. The first path (called

disrotatory path I) is P1 → TO1 → G1 → TO2 → P2. The second path (called disrotatory

path II) is P1 → TN1 → NN1 → TN2 → P2. These two paths are marked by dashed arrows

in Fig. 3. The third path is conrotatory (Fig. 4). It is P1 → RT → P3. When the path

is defined by finding values of X and r0 that minimize the potential for each value of Y

the RT transition state is approximately rectangle-shaped. Its coordinates are θ1 = 91.9◦,

θ2 = 88.1◦, and r0 = 6.996 bohr. The blue contours of Fig. 1 reveal RT. The RT shape is

not an exact rectangle and therefore its point group symmetry is not C2v but rather Cs, the

same as other points along this path. The energetics of the various stationary points are

given in Table I. Geometries of all the stationary points except RT are also given in Table

V of paper I. The barrier height for disrotatory path I is 105 cm−1 (TO). The barrier height

for disrotatory path II is 142 cm−1 (NN). The barrier height for the conrotatory path is 400

cm−1 (RT). The width of the conrotatory barrier is much less than the width of the barrier

of disrotatory path II. Disrotatory path I has two barriers.

It is not clear that only one of the three paths is important and therefore the tunnelling

dynamics could be quite complicated. This may be contrasted with the tunnelling in HF

dimer where one disrotatory path is the dominant path. Mills[34] and also Hougen and

Ohashi concluded[33] that if one tunnelling path is dominant the symmetry of a vibration-

rotation-tunnelling level is a product of the symmetry of a rotational factor, determined

assuming a rigid shape with the symmetry of the point group of the transition state shape,

and the symmetry of a vibrational/tunnelling factor. According to our calculation the tun-

nelling splittings are very small, primarily because the mass of the monomer is relatively

large. Even if it were possible to identify one or more paths as being more important, doing
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so would have no consequences for understanding the spectrum.

III. CALCULATING ENERGY LEVELS AND WAVEFUNCTIONS

The polyspherical coordinates defined in the previous section are used to compute the

energy levels. Details were given in Paper I. Euler angles specify the orientation of a body-

fixed frame attached such that the z-axis is along r0 and the x-axis is along the vector

r0 × r1 × r0. r0 is the inter-monomer vector and r1 is the vector along monomer 1, pointing

from the external N atom to O atom. The kinetic energy operator in these coordinates is

well known. [35] For the stretch coordinates we use potential optimized discrete variable

representation (PODVR) functions [36–41] and for the bend and rotational coordinates we

use parity adapted rovibrational functions [30, 31] In our calculations the angular quantum

numbers (see paper I) l1, l2, and m2 all have the same maximum value. Even and odd parity

levels are calculated separately.

Within each parity block, we use a symmetry adapted variant [42–44] of the Cullum and

Willoughby Lanczos method [45] to compute the energy levels. Eigenvalues are obtained by

computing matrix-vector products. Potential matrix-vector products are evaluated by using

quadrature and doing sums sequentially. [37, 44, 46–48] Kinetic energy matrix-elements

are given in Ref. 35. The wavefunctions are obtained from eigenvectors of the Hamiltonian

matrix that are computed as described previously. [30, 49] Similar techniques have been

used to compute energy levels of many molecules. [37, 50–53] The full permutation-inversion

(PI) symmetry group for the Hamiltonian we use is G4, composed of operations {E, σex} ⊗
{E, E∗} where σex permutes monomer 1 with monomer 2. [19] A/B label symmetric and

antisymmetric irreducible representations (irreps) with respect to σex and +/− label even

and odd parities. There are four PI irreps: (A+, B+, A−, B−). Transformation properties

of parity-adapted rovibrational basis functions under G4 operators are given in Ref. 54.

The dipole moment of the complex has A− symmetry. Allowed transitions are therefore

A+ ↔ A− and B+ ↔ B−. For the results presented in the section VI we use the basis,

quadrature points, masses and NNO rotational constant used in paper I.
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IV. IDENTIFYING ROVIBRATIONAL STATES ASSOCIATED WITH POLAR-

LIKE OR TN-LIKE VIBRATIONAL STATES

When coupling between vibration and rotation is not too strong, each rovibrational wave-

function can be approximated as a product of a vibrational wavefunction and a rotational

function. The vibrational wavefunction associated with a rovibrational state can be deter-

mined on the basis of the energy level pattern, if all vibrational levels are widely-spaced.

Energy levels are calculated separately for each J and for each J one can identify groups

of 1, 3, 5, · · · rotational levels. This simple procedure fails when rotational and vibrational

energy levels are similar, i.e., when the density of vibrational states is large. Note that

although the density of vibrational states may make it impossible to determine the vibra-

tional wavefunction associated with a rovibrational state, it does not necessarily invalidate

the product approximation. The simple procedure also fails whenever there are groups of

nearly degenerate levels such as when there are small tunnelling splittings. There are two

situations in which, even in the presence of tunnelling, one can easily identify the vibra-

tional/tunnelling state associated with a rovibrational level. (i) there is only one tunnelling

path and one knows the symmetry at the transition state (e.g NH3) (ii) the tunnelling split-

ting is not tiny and there are several possible tunnelling paths but only one is important (e.g.

HF dimer). In situation (ii), if one knows transition frequencies for transitions from both

tunnelling partners then symmetry selection rules alone enable one to determine whether to

associate the upper or the lower tunnelling state with a specific rovibrational state. If not all

the transitions are available then it is necessary to also use estimated rotational constants.

[55] In NNO dimer we have the density of states problem when attempting to attribute

rovibrational states to polar-like vibrational states and NNO dimer also has several possible

tunnelling paths and tiny tunnelling splittings. We therefore need alternatives to the simple

energy level pattern procedure. They will enable us to determine whether a rovibrational

transition is between different tunnelling states or within the same tunnelling state. In the

latter case, it is a pure rotational transition and this transition is described as within. In the

former case the transition is described as across.
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A. The vibrational parent of a J > 0 level

We denote the vibrational state associated with a specific rovibrational state its vibra-

tional parent. The first tool we have developed for finding the parent uses a re-expansion of

the rovibrational wavefunction. The idea is closely related to a procedure used in Ref. 56.

Results for NNO dimer are presented in the next section; the idea has also been tested and

shown to work on HF dimer and H2O2.

Given a rovibrational wavefunction,

Ψ(J) =
∑

l1,l2,m2;K

cl1,l2,m2;K |l1, l2, m2(K)〉|JK〉 (1)

and a set of vibrational wavefunctions,

Φv =
∑

l1,l2,m2

dl1,l2,m2
|l1, l2, m2〉 , (2)

one can re-expand the rovibrational wavefunction in the vibrational wavefunction basis, by

inserting
∑

v |Φv〉〈Φv| = 1 into Eq. (1) to obtain,

Ψ(J) =
∑

v,K

c̃K,v|Φv〉|JK〉 , (3)

where

c̃K,v =
∑

l1,l2,m2

cl1,l2,m2;K〈Φv|l1, l2, m2(K)〉 . (4)

The contribution of state Φv to state Ψ(J) is given by

Pv =
∑

K

c̃2
K,v . (5)

The vibrational state with the largest Pv is considered to be the vibrational parent of the

rovibrational state Ψ(J) . Note that the body-fixed frame of the Wigner function |JK〉 in

Eq. (3) is the same as the body-fixed frame of the original basis (Eq. (1)). That frame may

not be the best for the purpose of separating vibration and rotation in Eq. (3), however, this

should be unimportant because of the sum over K in the equation for Pv.

The overlap integral in Eq. (4) is a vibrational integral. (K) indicates that the vibrational

basis depends on K (because m1 = K − m2). When Φv is replaced with the right side of

Eq. (2) one obtains an overlap integral of associated Legendre polynomials,

〈l′1, l′2, m′
2(K

′ = 0)|l1, l2, m2(K)〉 = δl′
2
,l2δm′

2
,m2

〈Θ(−m2)
l′
1

|Θ(K−m2)
l1

〉 . (6)
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〈Θ(−m2)
l′
1

|Θ(K−m2)
l1

〉 is an integral over θ1 and is computed numerically exactly with Gauss

quadrature. Note that if the vibrational basis label (m1) is independent of K, then the

integral in Eq. (6) is a Kronecker delta and it becomes simpler to calculate Pv. For example,

Mátus et al. [56] use a vibrational (normal mode) basis that does not depend on rotational

quantum numbers.

B. Identifying states via intensities

Computed intensities can also be used to identify polar-like vibrational states and rovi-

brational states associated with polar-like vibrational states. To compute intensities one

needs a dipole surface. We use a simple model. The equations necessary for calculating

intensities are given in the next section. In this subsection we explain how intensities are

used to identify states. A transition between two rovibrational states will be intense if both

of the rovibrational states are associated with vibrational states with significant amplitude

in the polar or TN wells. We refer to such states as bright states. We therefore compute

R(0) line strengths for transitions between all J = 0 levels and all J = 1 levels and identify

the states connected by strong transitions as being associated with polar-like or TN-like

vibrational states. The idea is illustrated in Fig. 5. Most line strengths are nearly zero,

implying that most states are localized in the non-polar well. The lowest-energy bright states

we find are associated with states whose vibrational parent, determined using the procedure

of the previous subsection, is a polar-like state. By plotting J = 0 wavefunctions we confirm

that all the J = 0 states with bright R(0) transitions have significant amplitude outside the

non-polar well.

V. INTENSITY CALCULATION

At the global potential minimum, (NNO)2 has a slipped anti-parallel structure with C2h

point group symmetry and no dipole moment. If (NNO)2 were rigid and had the global

minimum shape it would have no microwave (MW) transitions. According to the potential

of paper I([13]) there are two important types of local minima: the polar minima with a

slipped approximately parallel structure and T-shaped N-in (TN) minima where the two
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monomers are approximately perpendicular to each other with the N atom of one of the

monomers pointing towards the other monomer. All of these local minima have structures

with permanent dipoles. If (NNO)2 were rigid and had one of these local minimum shapes it

would have MW transitions. (NNO)2 is of course not rigid; at least some of its wavefunctions

have nonzero amplitude in the local minima wells. Accurate intensities can be determined

by computing wavefunctions and dipole moment integrals.

To compute intensities it is convenient to use the equations presented in Ref. 57. In that

paper the equations are written using angles that relate a monomer fixed (MF) axis system

to a dimer-fixed (DF) axis system attached to the inter-monomer vector, which in turn is

related to the space-fixed (SF) axis system by two Euler angles . In this paper the basis

functions used (see section III and paper I) to compute the energy levels and wavefunctions

are in terms of polyspherical coordinates. To use the equations of Ref. 57 one therefore needs

to link the two sets of angles. The non-parity-adapted angular basis function used in paper

I is a product of a spherical harmonic and a Wigner function[58],

|Φ1〉 = |l1(m1)l2m2; JKM〉 =

√

2J + 1

8π2
Θm1

l1
(θ1)Y

m2

l2
(θ2, φ2)D

J
MK(α, β, γ)∗ (7)

with

Y m2

l2
(θ2, φ2) =

1√
2π

Θm2

l2
(θ2)e

im2φ2

m1 ≡ K − m2 , (8)

where Θm
l (θ) is a normalized associated Legendre function with the (−1)m Condon-Shortley

phase factor. DJ
MK is a Wigner function [58] and (α, β, γ) are the Euler angles that define

a three-angle body-fixed (BF) frame whose z-axis is along the vector r0 and whose x-axis

is along vector r0 × r1 × r0. Alternatively one can study (NNO)2 using the two-angle DF

frame and uncoupled basis functions similar to those used for (H2O)2. [59–62] Monomer fixed

(MF) frames attached to the monomers are specified by two Euler angles (ασ, βσ), for each

monomer, σ = A, B, that relate the DF and MF frames. [59] The z−axes of the MF frames

are aligned with the linear monomers parallel to r1 and r2. Appropriate basis functions are

obtained from the uncoupled basis of (H2O)2 by setting γA = γB = 0, and kA = kB = 0.

The uncoupled basis functions are,

|Φ2〉 = |jA(mA); jBmB; JKM〉
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=

√

2jA + 1

4π

√

2jB + 1

4π

√

2J + 1

4π
DjA

mA0(αA, βA, 0)∗DjB

mB0(αB, βB, 0)∗DJ
MK(α, β, 0)∗

=

(

1√
2π

)3

d̄jA

mA0(βA)d̄jB

mB0(βB)d̄J
MK(β)ei(Mα+mAαA+mBαB) (9)

with d̄j
mk(β) =

√

(2j + 1)/2dj
mk(β) being a normalized Wigner d-function and the constraint

mA ≡ K − mB . (10)

This constraint makes the kinetic energy operator (KEO) singularity-free. Now using the

relation

mAαA + mBαB = (mA + mB)αA + mB(αB − αA) (11)

and d̄j
m0(β) = Θm

j (β), one finds,

|Φ2〉 =

√

2J + 1

8π2
ΘmA

jA
(βA)Y mB

jB
(βB, αB − αA)DJ

MK(α, β, αA)∗ . (12)

Recognizing that the polyspherical angles are related to the angles based on the DF frame

by

θ1 = βA; θ2 = βB; φ2 = αB − αA; γ = αA , (13)

replacing

l1 = jA ; m1 = mA ; l2 = jB ; m2 = mB , (14)

we find that

|Φ1〉 = |Φ2〉 . (15)

The wavefunctions we compute with the coordinates and basis functions of paper I can

therefore be used with the intensity equations of Ref. 57

The line strength is

Si′i = 3

∣

∣

∣

∣

∣

∣

∑

M,M ′

〈Ψi′|µSF
0 |Ψi〉

∣

∣

∣

∣

∣

∣

2

, (16)

where µSF
0 = µSF

Z is the space-fixed Z component of the dipole moment operator and Ψi is

a rovibrational wavefunction. [19] The simple and realistic dipole model we use for (NNO)2

replaces µSF
0 with a sum of two terms, one for each monomer. Each term is a dipole parallel

to one of the two linear monomers and each term can be written in terms of DF frame dipole

components

µSF
0 =

1
∑

σ=−1

D
(1)
0,σ(α, β, 0)∗µDF

σ (17)

10



For the term associated with monomer A and in terms of the angles defining the MF frame

of monomer A, (αA, βA, 0), we have

µDF
σ =

1
∑

σ′=−1

D
(1)
σ,σ′(αA, βA, 0)∗µMF

σ′ , (18)

and

µSF
0 =

1
∑

σ,σ′=−1

D
(1)
0,σ(α, β, 0)∗D

(1)
σ,σ′(αA, βA, 0)∗µMF

σ′ . (19)

Because the dipole moment of NNO is along the MF z-axis, µMF
1 = µMF

−1 = 0 and µMF
0 = µNNO.

Therefore Eq. (19) is simplified,

µSF
0 = µNNO

1
∑

σ=−1

D
(1)
0,σ(α, β, 0)∗D

(1)
σ,0(αA, βA, 0)∗ . (20)

To compute line strengths we must compute 〈Ψi′ |µSF
0 |Ψi〉, where µSF

0 is replaced with a sum

of the right hand side of Eq. (20) and a similar equation for the contribution of monomer B.

Refs. 63–65 give equations for computing these integrals in a coupled rovibrational basis. We

prefer the uncoupled basis ( Eq. (9)) because it simplifies computing matrix-vector products.

It is equivalent to the basis of Eq. (7), used to compute the energy levels and wavefunctions.

The wavefunctions Ψi computed in the parity-adapted basis need to be written in terms of

the non-parity-adapted basis. To compute line strengths one then requires matrix elements

of the operator of Eq. (20) in the non-parity-adapted basis of Eq. (9)[19, 58]. For one of the

monomer contributions the required integral is,

〈j′A(m′
A); j′Bm′

B; J ′K ′M ′|µSF
0 |jA(mA); jBmB; JKM〉

= µNNOδj′
B

,jB
δm′

B
,mB

1
∑

σ=−1

(−1)m′
A [j′A][jA]

(

j′A
0

1

0

jA

0

)(

j′A
−m′

A

1

σ

jA

mA

)

× (−1)K ′+M ′

[J ′][J ]

(

J ′

−K ′

1

σ

J

K

)(

J ′

−M ′

1

0

J

M

)

(21)

where [J ] =
√

2J + 1 etc.

Rather than using dimer-type basis functions in terms of angles relating monomer frames

and a two-angle embedded frame as is explained in the previous two paragraphs it is possible

to directly derive the line strength expression using only the coordinates and basis functions

of paper I. The result is equivalent, but not as compact. To proceed in this fashion µSF
0 is

written as a linear combination of components in the three-angle BF frame,

µSF
0 =

1
∑

σ=−1

D
(1)
0,σ(α, β, γ)∗µBF

σ . (22)
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The integral of µSF
0 in the basis of Eq. (7) is

〈l′1(m′
1)l

′
2m

′
2; J

′K ′M ′|µSF
0 |l1(m1)l2m2; JKM〉

=
1
∑

σ=−1

〈l′1(m′
1)l

′
2m

′
2|µBF

σ |l1(m1)l2m2〉

× (−1)K ′+M ′

[J ′][J ]

(

J ′

−K ′

1

σ

J

K

)(

J ′

−M ′

1

0

J

M

)

. (23)

A similar equation was derived by Le Sueur et al.[66] Eq. (23) shows that the dipole inte-

gral is a sum of products of vibrational and rotational factors and thus reveals the role of

the vibrational dipole integral in the line strength. The vibrational dipole integral can be

evaluated using

µBF
+1 =

−1√
2
(µBF

x + iµBF
y )

µBF
0 = µBF

z

µBF
−1 =

1√
2
(µBF

x − iµBF
y ) (24)

(following Ref. 58) and

µBF
x = µ1 sin θ1 + µ2 sin θ2 cos φ2

µBF
y = µ2 sin θ2 sin φ2

µBF
z = µ1 cos θ1 + µ2 cos θ2 (25)

where µ1 = µ2 = µNNO. For example, the contribution to the vibrational dipole integral of

µBF
0 from vector r1 is

〈l′1(m′
1)l

′
2m

′
2|µBF

0 |l1(m1)l2m2〉 = µ1δm′
1
,m1

δl′
2
,l2δm′

2
,m2

〈Y m1

l′
1

| cos θ1|Y m1

l1
〉 (26)

with

〈Y m1

l′
1

| cos θ1|Y m1

l1
〉 =

[

(l1 − m1 + 1)(l1 + m1 + 1)

(2l1 + 1)(2l1 + 3)

]1/2

δl′
1
,l1+1+

[

(l1 − m1)(l1 + m1)

(2l1 − 1)(2l1 + 1)

]1/2

δl′
1
,l1−1 .

(27)

The same contribution can be derived by simplifying Eq. (21). Finally, when computing the

line strength, the summation over M and M ′ in Eq. (16) can be factored out and evaluated

explicitly,
∑

M,M ′

(

J ′

−M ′

1

0

J

M

)2

=
1

3
(28)
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VI. RESULTS

A. Bright vibrational states

All vibrational states up to 190 cm−1 with R(0) line strengths larger than 1.0 (all line

strengths in this paper are reported in units of the NNO dipole) are given in Table II. All

energy levels in this paper are with respect to the zero point energy (ZPE). We refer to these

as bright states. Due to their brightness these states must have significant amplitude outside

the non-polar well (see section IV B ). This is confirmed by making probability density (PD)

plots of each state. The PD plots are made by integrating out other coordinates. We made

2D plots for the coordinates pairs (θ1, θ2), (θ2, φ2), (r0, θ2), (r0, φ2) and all 1D PD plots for

each vibrational state. Fig. 6 shows very clean localized polar and TN states. The polar state

has amplitude in the two polar wells at (θ1 ∼ 60◦, θ2 ∼ 60◦) and (θ1 ∼ 120◦, θ2 ∼ 120◦). The

TN state has amplitude in the two TN wells at (θ1 ∼ 90◦, θ2 ∼ 0◦) and (θ1 ∼ 180◦, θ2 ∼ 90◦).

Fig. 7 shows clean v = 1 and v = 2 torsion states in the polar well. The PD of the v = 1

torsion state in the nonpolar well has only one maximum but the PD of the polar v = 1

torsion state has two maxima because there are two polar wells (one near θ2 = 60◦ and

another near θ2 = 120◦). In the nonpolar well the torsional vibration is about φ2 = 180◦ and

the v = 1 nonpolar torsion state therefore has a node at φ2 = 180◦. On the other hand, the

torsional vibration in the polar wells is about φ2 = 0 and the v = 1 polar torsion state has

a node at φ2 = 0. Fig. 8 shows geared (disrotatory) states for both the nonpolar and polar

cases. The geared coordinate in the polar well is δθ1 − δθ2(A+) and the geared coordinate

in the non-polar well is δθ1 + δθ2(B+). The differences in symmetry and the direction of

the motion of the two types of geared coordinates are clearly apparent in Fig. 8. However,

the two geared modes in both wells are both along the disrotatory valley, as is clearly seen

in Fig. 2 using extended angles. Fig. 9 shows a special state (cf. next section). It is the

20th A− state and is assigned as a combination of torsion+gear in the polar wells. This

state is special because its ∆Ka = 0 transition is much weaker than that of all other bright

vibrational states. All of these figures clearly demonstrate that there are wavefunctions that

are well localized in the polar wells. This is consistent with the observation of the rotational

spectrum of the polar isomer. There are also states, see Fig. 10, that have amplitudes in

both the polar and the TN wells. The 31th and 35th A+ states in Fig. 10 have primarily
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disrotatory and stretch character.

B. Analysis of vibration-rotation-tunnelling levels

An experimental rotational spectrum of the polar isomer was observed several years ago[4].

There are actually two polar wells and it is therefore in principle possible to study the

tunnelling between them. We find that the tunnelling in the first five polar-like and TN-like

states ground state is tiny (Table II). The smallness of the splitting is primarily due to the

mass that is moved as the molecule tunnels. When tunnelling splitting is larger, e.g., in HF

dimer, it is mostly hydrogen atoms that move.

Despite the smallness of the splitting, we would like to determine whether rovibrational

transitions occur across tunnelling states or within a tunnelling state. For a transition within

tunnelling states the initial state is associated with the lower (upper) tunnelling partner and

the final state is also associated with the lower (upper) tunnelling partner. For a transition

across tunnelling states the initial state is associated with the lower (upper) tunnelling

partner and the final state is associated with the upper (lower) tunnelling partner. For HF

dimer this was analysed by Mills[34] and by Hougen and Ohashi[33]. In the HF dimer case,

because one path is dominant, it is even possible to determine which path is dominant, once

it is known whether transitions occur within or across. For NNO dimer this is not possible

because there are several competing paths.

If the tunnelling splitting is not tiny then one can distinguish between the within and

across cases. In the within case the two R(0) tunnelling transitions have very similar fre-

quencies. In the across case the two R(0) tunnelling transition frequencies are different. In

NNO dimer the splitting is so small that the upper → lower and lower → upper transition

frequencies are essentially the same. We know only that a bright R(0) transition is between

two levels associated with the same vibrational state. To establish if a bright transition

is within or across we determine the vibrational parent (in this context a vibrational label

includes both a vibrational state label and a tunnelling state label) of the J = 1 state to

which the transition occurs. Vibrational parents for the bright J = 1 levels are shown in

Table III. As can be seen from this table, all J = 1 levels can be assigned to a tunnelling

state with a large value of Pv.
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Even for a non-rigid molecule, to the extent that a vibrational/rotational factorization

of the wavefunction is possible, one can determine symmetries of rotational functions for

each vibrational state. Knowing the symmetry of a J > 0 state and the symmetry of

its vibrational parent and using the product rule, Γvr = ΓvΓr (Γv includes Γtunnel here),

we determine the symmetry of the rotational factor, Γr. Γr for J = 1 levels are given in

Table IV. The results fall into two cases, as summarized in Table IV. These Γr can be

compared with what one would obtain if the molecule were rigid. When a molecule is rigid

the symmetry of the rotational wavefunctions can be determined from its point group. For a

rigid molecule the evenness and oddness of KaKc determine the symmetry of the rotational

functions, as we have shown in Table IV for two rigid shapes having point group symmetry

C2h and C2v[19, 33].

The J = 1 levels whose vibrational parents are one of the 11 nonpolar vibrational states

(Table VII of paper I) are all case (a) (see Table IV). Case (a) is exactly what one would

expect for a rigid molecule of C2h symmetry. The nonpolar isomer has C2h symmetry and the

fact that we observe case (a) for nonpolar parents is therefore consistent with the idea that

nonpolar wavefunctions have significant amplitude close to the nonpolar minimum. Because

Γr of case (a) can only be B− or A+ (true not only for J = 0 and 1, but for all J) and the

dipole symmetry is A−, symmetry ensures that there are no pure rotational transitions. Γr

is a consequence of the vibrational parent, therefore, rotational transitions can occur only

if coupling is strong enough to change parents and hence convert rovibrational levels from

case (a) to case (b).

We find that rovibrational transitions between the non-polar ground state and the non-

polar torsional state have appreciable intensity. For example, the c-type R(0) transition

between the Γvr = A+, 000 ground state at E = 0.0 cm−1 and the Γvr = A−, 110 v = 1

torsion state at E = 26.1093 cm−1 is symmetry-allowed, see Table VII of paper I. This is

consistent with the fact that Dehghany et al. [2] observed c-type transitions in the torsion +

in-phase NNO monomer ν1 stretch infrared combination band of the non-polar isomer. To

the extent that the line strength of the combination band and the torsion fundamental are

similar, the line strength we compute, S = 0.033 (see also Table IX), should be close to the

measured line strength in Dehghany et al.’s experiment. Indeed, Dehghany et al. observe

that this c-type band is 20 times weaker than the NNO dimer fundamental band.
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Rotational functions of almost all the bright states belong to case (b); the only exceptions

are states A + (21) and A − (20). These bright states include polar states and TN states.

All bright R(0) transitions are given in Table V and some bright Q(1) transitions are given

in Table VI. The R(0) and Q(1) transitions for case (b) are illustrated in Fig. 11. Each

vibrational state has two R(0) transitions and each of these is a doublet due to the very

small tunnelling splitting. Each vibrational state also has two Q(1) transitions and each is a

doublet. Many of the bright vibrational states have two upper rovibrational states, (111, A−)

and (101, A−), linked with the (000, A+) level by R(0) transitions. These two upper states

are the lower states of two Q(1) transitions to a common upper state (110, A+). For case

(b), all the R(0) and Q(1) bright transitions in the lists can be linked in this way. From Fig.

11 one can clearly conclude that in case (b) the ∆Ka = 1 transitions are within the same

tunnelling state and the ∆Ka = 0 transitions are across two tunnelling states. To extract

this information from the results, one must use the vibrational parent analysis since on the

basis of the strength of a transition one can deduce only that the lower and upper levels

share the same vibrational state, and not which tunnelling component to associate with the

two levels. Case (b) is exactly what one would expect if the molecule were rigid and had C2v

symmetry. Neither of the polar equilibrium geometries is C2v, but there is a 1-D tunnelling

path, between the two polar minima, that crosses the curve along which NNO dimer is C2v,

and is close to the minimized conrotatory path in figure 4. If tunnelling along one path were

dominant one could use the symmetry of the rotational factors to determine the symmetry

of that path. This is discussed by Hougen and Ohashi for HF dimer. [33] A similar analysis

for NNO dimer is not possible (or necessary) because there are several competing tunnelling

paths.

The two vibrational bright states that are not formally case (b) are A+(21) and A−(20).

Their Γr differ from those of case (b) (Table IV) because the Γr of the J = 1 levels with

the highest energies (both Ka = 1 levels) are interchanged. These two higher levels are close

because the averaged geometry in NNO dimer polar states is nearly prolate (A is much larger

than B and C). Owing to the fact that they are close small rovibrational perturbations could

change their order. Thus although A + (21) and A − (20) are not strictly case (b), they are

very nearly case (b) and ∆Ka = 1 and ∆Ka = 0 transitions are, as is true for case (b) states,

within or across, respectively, tunnelling states. The A − (20) vibrational state is different
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from all other bright vibrational states in Table V and VI in that while each of the other

vibrational states has two bright R(0) transitions, the A − (20) state has only one bright

R(0) transition and it is a ∆Ka = 1 transition. It also has only one bright ∆Ka = 1 Q(1)

transition. The missing ∆Ka = 0 transition does exist, but its line strength is much weaker.

For example, the line strength of the ∆Ka = 0 R(0) transition of A − (20) is S = 0.11.

This may be compared with the strong ∆Ka = 1 R(0) transition with S = 3.14 given in

Table V. The quenching of the ∆Ka = 0 transition indicates that the vibrationally averaged

dipole component along the inter-monomer axis is small. It is somewhat surprising that

this happens in a clean torsion+gear polar state and not in other lower states (the polar

v = 1 torsion state for example). Simultaneous excitation of multiple vibrational modes

may play a role here. If one adopts asymmetric top notation, one would consider the strong

R(0) and Q(1) transitions of A − (20) c-type transitions, while the corresponding lines for

all other bright states are b-type transition. Interchanging the two highest J = 1 rotational

levels changes a transition from b-type to c-type. Given the closeness of these two levels, one

should not attach much significance to the distinction between b-type and c-type transitions.

We also assign high J levels of the ground state of the polar isomer in order to compare

with the MW experiment[4]. A good procedure is to calculate only the Q-branch because all

the 2J + 1 levels (each of which is doubly degenerate due to tunnelling) will be involved in

the Q(J) bright transitions ( Fig. (11b)). Because the tunnelling splitting is so small we use

the vibrational parent analysis to determine which of two nearly degenerate rovibrational

levels is associated with the A+ tunnelling state. Their Γvr are listed in Table VII. Again

a dominant vibrational parent can always be found, however, Pv does tend to decrease with

increasing J . Note that for levels in Table VII the Γr are determined by the evenness and

oddness of KaKc.

In Table VIII, the MW lines of Walter et al. [4] are compared with the calculated

lines. The differences are on the order of 0.001 cm−1. Despite the precision of modern MW

experiments it seems unlikely that it is possible to resolve the components of the tunnelling

doublets. The splitting is ∼ 5 × 10−8 cm−1 for the 000 polar level and ∼ 9 × 10−9 cm−1

for the 111 polar level. Of course it is possible that in higher bright states the splitting is

large enough that it would be observable. According to the potential we use there are states

localized in the TN wells. Some lower level ab initio calculations do not predict TN wells. If
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experimentalists could confirm the existence of the TN states this would confirm the superior

accuracy of the higher level ab initio calculations. Rotational energy levels of the symmetric

tunnelling partner of the TN ground state are in a table in supplementary material.

It is striking that all the bright transitions are within a vibrational state (the tunnellng

states may be different). Transitions between different vibrational states are usually weak,

even when they are symmetry-allowed. Line strengths for such transitions from the non-polar

ground state or the polar ground state to other states are given in Table IX. The observed

[2] transition from the non-polar ground state to the non-polar torsion state, discussed

previously, is the strongest band in Table IX. The inter-vibration bands for the polar isomers

are two to three orders of magnitude weaker. It is therefore unlikely that these bands will

be observed.

VII. CONCLUSION

In this paper we have studied NNO dimer states localized in polar and T-shaped N-in

wells and transitions between the states. Despite the fact that hundreds of thousands of basis

functions are required to determine converged energy levels it is not computationlly difficult

to compute a list of energy levels. It is easily done with the Lanczos algorithm and evaluating

potential matrix-vector products by using quadrature and doing sums sequentially. A list

of energy levels, however, does not provide much understanding. One can attach symmetry

and J labels to the levels but it is hard to identify rovibrational states that can be associated

with the nonpolar, polar and TN wells.

In this paper we use two tools for identifying what we call the vibrational parent of

a rovibrational state. This enables us to systematically link rovibrational and vibrational

states and hence to find the states in energy level lists that correspond to polar-like and

TN-like vibrational states. In the first procedure we expand rovibrational states in terms

of vibrational wavefunctions (section IVA). In the second procedure (section IVB) we use

intensity to identify bright transitions and hence find the polar-like rovibrational states.

Both of these procedures are systematic and easy to use. They do not require making

and interpreting plots. It would be labourious to make and inspect plots of thousands of

wavefunctions. By determining vibrational parents we are able to break the rovibrational
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states into two groups: class (a) and class (b). There are no rotational transitions between

states of class (a) with the same vibrational parent. These are dark states. Their vibrational

parents all have amplitude concentrated in the non-polar well. There are strong rotational

transitions between class (b) states with the same vibrational parent (but the tunnelling state

may be different). These are bright states. Their vibrational parents all have amplitude

concentrated in the polar wells or the TN wells. We find that transitions between states

having different parents are all weaker than transitions between states with the same (bright)

parents. The vibrational parent analysis also enables us to determine whether rovibrational

transitions occur between the same or different tunnelling partners. When the tunnelling

splitting is not tiny (e.g HF dimer) the vibrational parent analysis is not necessary, but in

NNO dimer it is necessary because the splittings are ∼ 10−8 cm−1.

Zheng et al. [14] have done calculations similar to ours but on a different potential

surface. Their potential points are computed at the CCSD(T)/aug-cc-pVTZ level. They

report energies for the polar ground state (J ≥ 0) and all four fundamental bands of the

polar isomer(s). Although the polar ground state energy of Zheng et al. (137.0 cm−1) differs

somewhat from our value (143.5 cm−1), the vibrational energies of the geared and torsion

states measured from the polar ground state are very close : 20.3 cm−1 and 21.4 cm−1 for

our calculation, and 20.1 cm−1 and 21.3 cm−1 for Ref. 14. Zheng et al. assigned a stretch

polar state at 44.2 cm−1. Two of our calculated bright vibrational states near this energy,

(states A + (31) and A + (35) in Table II and Fig. 10), have stretch excitation, but their

(θ1, θ2) PD plots show that neither is a pure stretch state. The four fundamentals of the

non-polar states of Ref. 14 agree with our results reported in paper I to within 2.4 cm−1.

Zheng et al. did not find TN states presumably because their potential surface has no or

very shallow TN minima. They do not explain how they identify J > 0 polar states but do

report J > 0 levels of the polar ground state. The two tools we propose make it possible

to do this in a systematic fashion and it should be possible to use them to disentangle and

analyze lists of energy levels for many molecules.
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TABLE I: Stationary point energies (in cm−1 ) on the IMLS fitted potential. NO stands for non-

polar-O-in. It is also labelled as G because it is global minimum. See texts for notations for other

points. ∆E is the difference from the energy of the polar well.

NO TO P TN NN RT

E -633.43 -360.21 -465.20 -421.03 -322.85 -65.71

∆E -168.23 104.99 0.00 44.17 142.35 399.49
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TABLE II: Bright vibrational levels (in cm−1) of (NNO)2 less than 190 cm−1 above the zero point

energy (ZPE). The energy is measured relative to the ZPE which is -514.21180 cm−1. g.s. stands

for the ground state. The levels occur in pairs. Wavefunctions for levels denoted Es (Ea) are

symmetric (antisymmetric) with respect to exchange of the monomers. The number in parenthese

in the second and third columns is the ordinal number within the symmetry block.

assignment sym of Es sym of Ea Es Ea ∆ = Ea − Es

polar g.s. A + (12) B + (9) 143.52941 143.52941 0.00000

polar + gear A + (21) B + (13) 163.84179 163.84179 0.00000

polar + torsion A − (13) B − (9) 164.92546 164.92546 0.00000

a A + (25) B + (15) 173.29199 173.29200 0.00001

TN g.s. A + (26) B + (19) 178.02947 178.02947 0.00000

polar + torsion + gear A − (20) B − (12) 183.84371 183.84508 0.00137

polar + torsion overtone A + (30) B + (23) 184.76743 184.76595 -0.00148

mixture (polar + TN) A + (31) B + (24) 185.18691 185.18676 -0.00015

mixture (polar + TN) A + (35) B + (25) 188.18546 188.17448 -0.01098
a This is a polar state with structure in the geared, anti-geared, and stretch coordinates.
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TABLE III: J = 1 levels of the bright vibrational states of Table II. The assignments are based on

both the vibrational parent analysis and the intensity calculation. The tunnelling splitting for the

first five vibrational states is smaller than 0.0001 cm−1 and therefore the energy of the asymmetric

tunnelling state is not listed. Each J = 1 level is labelled by (sym,Pv), where Pv is computed from

Eq. (5). The J = 0 levels are labelled by (sym, ordinal number).

000 101 111 110

143.52941 (A+, 12) 143.62998(B−,0.98) 143.88389(A−,0.97) 143.89221(B+,0.99)

163.84180 (A+, 21) 163.93025(B−,0.99) 164.10161(B+,0.89) 164.10437(A−,0.90)

164.92546 (A−, 13) 165.03010(B+,0.95) 165.39156(A+,0.83) 165.40051(B−,0.87)

173.29199 (A+, 25) 173.38387(B−,0.99) 173.66508(A−,0.96) 173.67155(B+,0.97)

178.02947 (A+, 26) 178.10566(B−,1.00) 178.46832(A−,0.82) 178.47215(B+,0.82)

183.84371 (A−, 20) 183.90535(B+,0.81) 183.97459(B−,0.75) 184.00771(A+,0.66)

183.84508 (B−, 12) 183.90599(A+,0.81) 183.97468(A−,0.78) 184.00817(B+,0.68)

184.76743 (A+, 30) 184.87454(B−,0.93) 185.32105(A−,0.66) 185.32809(B+,0.72)

184.76595 (B+, 23) 184.87305(A−,0.93) 185.32036(B−,0.70) 185.32741(A+,0.75)

185.18691 (A+, 31) 185.27226(B−,0.97) 185.57290(A−,0.86) 185.57821(B+,0.86)

185.18676 (B+, 24) 185.27218(A−,0.97) 185.56955(B−,0.86) 185.57463(A+,0.87)
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TABLE IV: The symmetry of the J = 1 rotational factors, Γr, of (NNO)2 obtained after removing

Γv from Γvr. Γv is obtained from the symmetry of the vibrational parent of the rovibrational J = 1

wavefunctions. Two cases, denoted by a and b, are observed.

case of states 101 111 110

(a) Most dark states B− B− A+

(b) Most bright states B− A− B+

C2h shape B− B− A+

C2v shape B− A− B+
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TABLE V: All bright R(0) transitions (line strength S > 1.0) in cm−1 with lower state energies up

to 190 cm−1. Transitions originating from the symmetric (antisymmetric) tunnelling partner are on

the left (right). Each vibrational/tunnelling state has two transitions ∆Ka = 0 and ∆Ka = 1 except

for the state labelled by † whose ∆Ka = 0 transition is weak. See Fig. (11a) for an illustration of

transitions in this table.

sym

(J = 0)

EJ=0 EJ=1 ∆ S sym

(J = 0)

EJ=0 EJ=1 ∆ S

A+ 143.5294 143.6300 0.1006 1.4489 B+ 143.5294 143.6300 0.1006 1.4489

A+ 143.5294 143.8839 0.3545 2.4452 B+ 143.5294 143.8839 0.3545 2.4452

A+ 163.8418 163.9303 0.0885 1.0262 B+ 163.8418 163.9303 0.0885 1.0262

A+ 163.8418 164.1044 0.2626 2.5704 B+ 163.8418 164.1044 0.2626 2.5704

A− 164.9255 165.0301 0.1046 1.6960 B− 164.9255 165.0301 0.1046 1.6960

A− 164.9255 165.3916 0.4661 1.9788 B− 164.9255 165.3916 0.4661 1.9788

A+ 173.2920 173.3839 0.0919 1.4774 B+ 173.2920 173.3839 0.0919 1.4776

A+ 173.2920 173.6651 0.3731 2.2335 B+ 173.2920 173.6651 0.3731 2.2335

A+ 178.0295 178.1057 0.0762 1.3161 B+ 178.0295 178.1057 0.0762 1.3161

A+ 178.0295 178.4683 0.4389 1.4973 B+ 178.0295 178.4683 0.4389 1.4973

A− †183.8437 184.0077 0.1640 3.1429 B− †183.8451 184.0082 0.1631 3.2476

A+ 184.7674 184.8731 0.1056 1.6970 B+ 184.7660 184.8745 0.1086 1.7021

A+ 184.7674 185.3210 0.5536 1.5376 B+ 184.7660 185.3204 0.5544 1.6202

A+ 185.1869 185.2722 0.0853 1.2440 B+ 185.1868 185.2723 0.0855 1.2616

A+ 185.1869 185.5729 0.3860 1.9034 B+ 185.1868 185.5696 0.3828 1.8970

A+ 188.1855 188.2680 0.0826 1.2244 B+ 188.1745 188.2784 0.1039 1.2244

A+ 188.1855 188.5844 0.3990 1.4143 B+ 188.1745 188.5962 0.4217 1.8094
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TABLE VI: Bright Q(1) transitions (in cm−1) for two selected polar-like vibrational states, A+(12)

and the polar + torsion + gear state, A-(20). Q(1) transitions in this table are linked with the

R(0) transitions in Table V. See Fig. (11b) for an illustration of transitions in this table.

sym

(E′)

E′′
J=1 E′

J=1 ∆ S sym

(E′)

E′′
J=1 E′

J=1 ∆ S

A+ 143.6300 143.8922 0.2622 3.6677 B+ 143.6300 143.8922 0.2622 3.6677

A+ 143.8839 143.8922 0.0083 2.1732 B+ 143.8839 143.8922 0.0083 2.1732

A− 183.9060 183.9747 0.0687 4.9280 B− 183.9054 183.9746 0.0692 4.8805
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TABLE VII: Rotational energy levels of the symmetric tunnelling partner of the polar ground state

(in cm−1) up to J = 3. Energies of the rotational levels of the anti-symmetric partners are identical

to within the figues presented and their symmetries are products of the symmetry in this table and

B+. To determine which level is associated with the symmetric tunnelling partner we use the

vibrational parent analysis.

JKaKc Γvr E Pv

000 A+ 143.5294 1.00

101 B− 143.6300 0.98

111 A− 143.8839 0.97

110 B+ 143.8922 0.99

202 A+ 143.8309 0.94

212 B+ 144.0767 0.92

211 A− 144.1017 0.97

221 B− 144.8632 0.93

220 A+ 144.8634 0.93

303 B− 144.1318 0.89

313 A− 144.3658 0.84

312 B+ 144.4157 0.94

322 A+ 145.1650 0.88

321 B− 145.1660 0.88

331 A− 146.4547 0.86

330 B+ 146.4547 0.86
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TABLE VIII: Rotation-tunnelling transitions (up to J ′ ≤ 2) of the polar ground state (in cm−1) of

(NNO)2. S is the calculated line strength.

J ′′
K ′′

a K ′′
c
→ J ′

K ′
aK ′

c
ν(cal) ν(obs) S

000 → 101 0.1006 1.45

000 → 111 0.3545 0.35510 2.45

110 → 101 0.2622 0.26325 3.67

110 → 111 0.0083 2.17

110 → 211 0.2095 0.20829 2.17

110 → 221 0.9710 3.67

101 → 202 0.2009 0.19988 2.90

101 → 212 0.4467 0.44694 3.67

111 → 202 0.0530 1.28

111 → 212 0.1928 0.19189 2.17

111 → 220 0.9796 3.61

211 → 202 0.2708 0.27166 6.01

211 → 212 0.0250 1.21

211 → 220 0.7618 2.14

221 → 212 0.7865 2.04

221 → 220 0.0002 4.83
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TABLE IX: R(0) line strengths for transitions from the non-polar ground state or the polar ground

state to other vibrational states.

v′′ v′ assignment ∆E (cm−1) S

non-polar GS (A+) non-polar torsion (A−) 000 → 101 26.1093 3.3E-2

non-polar GS (A+) non-polar gear (B+) 000 → 101 41.9682 1.2E-2

non-polar GS (A+) non-polar gear (B+) 000 → 111 42.2244 6.4E-3

polar GS (A+) polar gear (A+) 000 → 101 20.4008 8.1E-5

polar GS (A+) polar gear (A+) 000 → 110 20.5750 2.3E-4

polar GS (A+) polar torsion (A+) 000 → 110 21.8711 2.1E-5
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FIG. 1: Potential obtained by minimizing with respect to r0 for (a) φ2 = 180◦ and (b) φ2 = 0◦.

The contour interval is 60 cm−1 except the green contours (between -450 and -390 cm−1) for which

it is is 10 cm−1 and blue contours (between -70 and -60 cm−1) for which it is 5 cm−1. The green

contours reveal the TN well and the blue contours reveal the rectangle-shaped (RT) transition state

between the two polar monomer.

FIG. 2: Potential as a function of the extended angles (θ̃1, θ̃2) obtained by minimizing with respect

to r0. The contour intervals are the same as in Fig. 1. The extended angle θ̃1 is defined as

in Fig. 1 of paper I. The extended angle θ̃2 differs from the one defined in Fig. 1 of paper I:

θ̃2(this work) = θ̃2(paper I) − 180◦. The relation between (θ̃1, θ̃2) and (θ1, θ2) is θ̃1 = θ1, θ̃2 = θ2 if

φ2 = 180◦, and θ̃1 = θ1, θ̃2 = 360◦ − θ2 if φ2 = 0◦.

FIG. 3: The disrotatory cycle (solid arrow) starting from and ending at the global minimum (G).

Two polar (P1) to polar (P2) tunnelling paths are indicated by the dashed arrows. The first one

(disrotatory I) goes through TO1 and TO2 barriers (105 cm−1 higher than the polar wells) and the

second one (disrotatory II) goes through a NN1 barrier (142 cm−1 higher than the polar wells).

FIG. 4: The conrotatory tunnelling path, going through an approximately rectangle-shaped (RT)

barrier ( 400 cm−1 higher than the polar wells).

FIG. 5: Diagram illustrating how J = 0 and J = 1 bright states (in red) are identified by searching

for bright R(0) transitions. The two bright R(0) transistions shown are from the polar ground state

000 to the polar J = 1 excited states 101 (∆Ka = 0) and 111 (∆Ka = 1).
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FIG. 6: Probability density plots for the ground state (E = 0 cm−1, A+) (a), the polar ground

state (E = 143.53 cm−1, A+) (b) and the TN ground state (E =178.03cm−1, A+) (c). The contour

interval is 1.0.

FIG. 7: Probability density plots for the v = 1 torsion state in the polar wells (E = 164.93 cm−1,

A-) (b), the v = 2 torsion state in the polar wells (E = 184.77 cm−1, A+) (c), and, as a comparison,

the v = 1 torsion state in the non-polar well (E = 25.76 cm−1, A-) (a). The contour interval is 0.4.

FIG. 8: Probability density plots for the v = 1 geared state in the polar wells (E = 163.84 cm−1,

B+) (b), and, as a comparison, the v = 1 geared state in the non-polar well (E = 41.86 cm−1, B+)

(a). The contour interval is 0.4.

FIG. 9: Probability density plots for the A − (20) state (E = 183.84 cm−1, A−). The contour

interval is 0.4, 0.02 and 0.002 for (a), (b) and (c), respectively.

FIG. 10: Probability density plots for two mixture states that have amplitude in both the polar

and the TN well. (a) is (E = 185.19 cm−1, A+,31) and (b) is (E = 188.19 cm−1, A+,35), The

contour interval is 0.2.

FIG. 11: Transitions for Case (b) which includes most bright vibrational states including polar and

TN states. The levels associated with the symmetric and anti-symmetric tunnelling states are on

the left (solid lines) and right (dashed lines), respectively.
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